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In this supplementary material, we first introduce more
preprocessing details about datasets in Sec. 1. In Sec. 2,
we present the definitions of evaluation metrics for 3D ge-
ometry and standard 2D depth, separately. In Sec. 3, we
illustrate the surface update in the incremental reconstruc-
tion process. In Sec. 4, we provide additional quantita-
tive results in 2D depth metrics following [14] and 3D ge-
ometry metrics following the evaluation protocol defined
in [1]. In addition, more qualitative reconstructions on the
7-Scenes dataset are shown in Sec. 4. In Sec. 5, we provide
more visualizations of similarity maps and learned visibility
weights for both surface voxels and empty voxels. In Sec. 6,
we discuss the limitations of our approach.

1. Details about Datasets

In the ScanNet dataset [3], each RGB image shares
the same camera pose parameters with its corresponding
ground truth depth map. All scenes are located in the
first quadrant of the world coordinate system with the
floors orthogonal to the z-axis. However, in the 7-Scenes
dataset [12], the RGB and depth cameras have not been cali-
brated. We follow the preprocessing method in [10] to align
the RGB image and depth maps. For each scene, we manu-
ally find the normal of the floor and calculate a transforma-
tion matrix that transforms the scene to the first quadrant of
the world coordinate system with its floor orthogonal to the
z-axis. All poses for each scene are updated by multiplying
with this transformation matrix. The ground truth 3D mesh
for each scene is generated from the calibrated ground truth
depth maps using the standard TSDF fusion algorithm [2]
with a voxel size of 1cm.

2. Definitions of Metrics

Following [8, 14], we evaluate our method on both 3D
geometry metrics presented in [8] and standard 2D depth
metrics defined in [5]. The definitions of these metrics are
shown in Tab. 1.

2D Depth Metrics 3D Geometry Metrics

Abs Rel 1
n

∑
|d− d∗|/d∗ Acc meanp∈P (minp∗∈P∗∥p− p∗∥)

Abs Diff 1
n

∑
|d− d∗| Comp meanp∗∈P∗(minp∈P ∥p− p∗∥)

Sq Rel 1
n

∑
|d− d∗|2/d∗ Chamfer 1

2 (Acc + Comp)

RMSE
√

1
n

∑
|d− d∗|2 Prec meanp∈P (minp∗∈P∗∥p− p∗∥ < 0.05)

δ < 1.25i 1
n

∑
(max ( d

d∗ ,
d∗

d ) < 1.25i) Recall meanp∗∈P∗(minp∈P ∥p− p∗∥ < 0.05)
Comp % valid predictions F-score 2×Prec×Recal

Prec+Recal

Table 1. Definitions of Metrics. n is the number of pixels with
both valid ground truth and predictions. d and d∗ denote the pre-
dicted and ground truth depths. t and t∗ denote the predicted and
ground truth TSDFs. p and p∗ denote the predicted and ground
truth point clouds, respectively.

3. Global Update and Reconstruction

Different from depth-based methods [6, 7, 10, 15] that
predict depth map for each input keyframe images inde-
pendently and fuse it into a TSDF volume, our global fea-
ture fusion module makes the current-fragment reconstruc-
tion conditional on previous reconstructions and updates the
surface geometry globally. An illustration of the surface
update in the incremental reconstruction process is shown
in Fig. 2. Thanks to our global feature fusion, the inac-
curate surface reconstructed by previous fragments will be
corrected with the new sequentially online input segment.

4. More Reconstruction Results

We report the experimental results evaluated by 2D
depth metrics on ScanNet and 7-Scenes datasets in Tab. 2
and Tab. 3, respectively. Our method outperforms exist-
ing online feature fusion methods [1, 14] in most met-
rics. We also evaluate our method on ScanNet following
the evaluation protocol defined in [1] and show the results
in Tab. 4. Compared to the existing online feature fusion
methods [1, 14], we achieve the best performance in the
Chamfer distance metric. The qualitative comparison on 7-
Scenes is shown in Fig. 3. Similar to results on ScanNet, our
method is able to reconstruct more complete scenes com-
pared to NeuralRecon [14] and more coherent scenes com-
pared to SimpleRecon [10]. These results further demon-
strate the generalization ability of the proposed method.
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Method Abs Rel ↓ Abs Diff ↓ Sq Rel ↓ RMSE ↓ δ < 1.25 ↑ Comp ↑

D
ep

th
Fu

si
on MVDNet [15] 0.121 0.193 0.088 0.327 0.870 0.945

GPMVS [6] 0.094 0.153 0.069 0.282 0.902 0.948
DPSNet [7] 0.109 0.177 0.080 0.306 0.882 0.948

DeepVMVS [4] 0.067 0.112 0.040 0.216 0.936 0.945
SimRec [10] 0.046 0.083 0.022 0.173 0.954 0.944

Fe
at

ur
e

Fu
si

on

O
ffl

in
e Atlas [8] 0.065 0.123 0.045 0.251 0.936 0.999

3DVNet [9] 0.062 0.107 0.042 0.214 0.941 0.984
VoRTX [13] 0.058 0.092 0.036 0.199 0.938 0.950

O
nl

in
e NeuRec [14] 0.065 0.106 0.031 0.195 0.948 0.909

TF [1] 0.065 0.099 0.042 0.205 0.934 0.905
Ours 0.055 0.088 0.030 0.183 0.942 0.923

Table 2. Quantitative results of 2D metrics on ScanNet. We
show the results of two-stage depth fusion methods (top) and those
for end-to-end feature fusion works (bottom) following the evalu-
ation protocol in [14]. These depth scores are calculated by com-
paring the rendered depths from a fused mesh to the ground truth.
We highlight the best results for Depth Fusion, Feature Fusion Of-
fline and Feature Fusion Online methods in blue, teal, and violet,
respectively. Offline methods assume to observe the whole video
sequence. Our method performs the best among all online and of-
fline feature fusion methods for most metrics.

Method Abs Rel ↓ Abs Diff ↓ Sq Rel ↓ RMSE ↓ δ < 1.25 ↑ Comp ↑
SimRec [10] 0.212 0.109 0.448 0.207 0.952 0.983

NeuRec [14] 0.194 0.125 0.322 0.231 0.932 0.871
Ours 0.215 0.109 0.454 0.220 0.942 0.949

Table 3. Quantitative results of 2D metrics on 7-Scenes. We
evaluate our method on the official test split of 7-scenes using the
same 2D metrics and evaluation protocol as in [14]. All methods
are trained on ScanNet and for baseline methods, we use their re-
leased pre-trained models.

Method Acc ↓ Comp ↓ Chamfer ↓ Prec ↑ Recall ↑ F-score ↑

D
ep

th
Fu

si
on

COLMAP [11] 10.22 11.88 11.05 0.509 0.474 0.489
MVDNet [15] 12.94 8.34 10.64 0.443 0.487 0.460
GPMVS [6] 12.90 8.02 10.46 0.453 0.510 0.477
DPSNet [7] 11.94 7.58 9.77 0.474 0.519 0.492

DeepVMVS [4] 10.68 6.90 8.79 0.541 0.592 0.563
SimRec [10] 5.53 6.09 5.81 0.686 0.658 0.671

Fe
at

ur
e

Fu
si

on

O
ffl

in
e Atlas [8] 7.16 7.61 7.38 0.675 0.605 0.636

3DVNet [9] 7.72 6.73 7.22 0.655 0.596 0.621
VoRTX [13] 4.31 7.23 5.77 0.767 0.651 0.703

O
nl

in
e NeuRec [14] 5.09 9.13 7.11 0.630 0.612 0.619

TF [1] 5.52 8.27 6.89 0.728 0.600 0.655
Ours 4.17 9.05 6.61 0.751 0.580 0.653

Table 4. Quantitative results of 3D metrics on ScanNet follow-
ing the evaluation protocol in [1]. We show the results of two-
stage depth fusion methods (top) and those for end-to-end feature
fusion works (bottom). We highlight the best results for Depth Fu-
sion, Feature Fusion Offline and Feature Fusion Online methods
in blue, teal, and violet, respectively. All baseline results are taken
from previous papers [1, 10]. Offline methods assume to observe
the whole video sequence. Compared to all existing online feature
fusion methods [1, 14], our method achieves the best performance
in the Chamfer distance metric.

5. More Visualizations of Visibility
In Fig. 4, we visualize more similarity maps and learned

visibility fusion weights for surface voxels and empty vox-
els in different local scene segments. These figures demon-

Ours Ground truth

Figure 1. Failure case. Our approach tends to recover the 3D
structure of both the real and virtual scenes caused by the mirror.

strate that our local feature fusion module is able to distin-
guish the relevant views from the irrelevant ones for differ-
ent kinds of voxels via the visibility weights.

6. Limitation
First, our method cannot distinguish whether there is a

mirror in the scene. One failure case is shown in Fig. 1.
Instead of purely reconstructing the real scene surface, our
approach tends to recover the 3D structure of both the real
and virtual scenes caused by the mirror.

Second, although depth-based methods struggle to gen-
erate coherent surfaces, the detailed structures recon-
structed by the depth-based methods are better than that
reconstructed by feature fusion based methods which are
limited by the resolution of the feature volume. We include
more qualitative comparisons in Fig. 5. GPMVS [6] and
DeepVideoMVS [4] are two real-time depth-fusion base-
lines with consistent video depth estimation. Since the
temporal information is encoded in the latent space for
depth estimation without directly considering the geomet-
rical consistency of the scene, their results still have arti-
facts especially for textureless regions like walls. How-
ever, as highlighted in red boxes, GPMVS and Deep-
VideoMVS could reconstruct more detailed structures than
VoRTX [13], which is the state-of-the-art offline feature fu-
sion based method and our approach. Due to the global
observation of the whole scene, VoRTX can achieve a more
complete surface than our results or even the ground truth
(highlighted in the blue boxes).



(a) Given the input fragment F1 consisting of 9 consecutive keyframes (left), the network outputs the surface geometry (middle) based on current observa-
tions, where the reconstruction of the distant wall is inaccurate (right).

(b) Given the input fragment F7 consisting of 9 consecutive keyframes (left), the network outputs the surface geometry based on current observations as
well as previous reconstructions stored in the global map. In the updated global map (middle), the reconstruction of the wall falling in the current fragment
bounding volume (FBV) is accurate (right).

(c) Given the global surface G̃6, reconstructed by previous fragments {Fi}6i=1, and the local surface L7, reconstructed by the current fragment F7, our
global feature fusion module fuses the local features into the global map. Specifically, in addition to the voxels reserved after local sparsification, the voxels
that store global features and lie within the current camera views are also updated. By projecting these voxels into the input images of F7 and leveraging
the photometric consistency between features from different views, the inaccurate surface reconstructed by previous fragments will be removed due to the
low occupancy probabilities.

Figure 2. Illustration of the surface update in the incremental reconstruction process. Our global feature fusion module makes the
current-fragment reconstruction conditional on previous reconstructions and updates the surface geometry globally.



SimpleRecon [10] NeuralRecon [14] Ours Ground truth

Figure 3. Qualitative comparison on 7-Scenes. Compared to NeuralRecon [14], our reconstruction results are more complete and contain
more details (highlighted in the red boxes). Since SimpleRecon [10] is a two-stage depth-based method, it generates many artifacts and is
not coherent (highlighted in the yellow boxes).



(a) The surface voxel (red dot) occupied by the leg of the table is visible in all views.

(b) The surface voxel (red dot) occupied by the quilt is visible in the last 5 views while occluded in the first 4 views.

(c) The surface voxel (red dot) occupied by the ladder is visible in the first 6 views, projected to the image edge in 7th view, and to the outside of the image
in the 8th and 9th views.

Figure 4. More visualizations of the relations between the similarity map and the visibility weights. We illustrate this relationship
using two kinds of voxels. For the surface voxel (red dot), the features extracted from visible views have higher similarity, resulting in
higher visibility weights. For the empty voxel (green cross), the features from different images are different leading to lower visibility
weights.



GPMVS [6] DeepVideoMVS [4] VoRTX [13] Ours Ground truth

Figure 5. Limitation of feature fusion based methods. Compared to depth fusion based methods [4, 6], feature fusion based methods
(including VoRTX [13], which is the state-of-the-art offline volumetric approach, and ours) are limited by feature volume resolution in the
reconstruction of detailed structures (highlighted in the red boxes).
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